
Contents

6 Multipath Execution 1

Augustus K. Uht University of Rhode Island

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

6.2 Motivation and Essentials . . . . . . . . . . . . . . . . . . . . 2

6.3 Taxonomy and Characterization . . . . . . . . . . . . . . . . 3

6.3.1 Branch Tree Geometry . . . . . . . . . . . . . . . . . . 5

6.3.2 Branch Path/Instruction ID . . . . . . . . . . . . . . . 9

6.3.3 Phases of Operation . . . . . . . . . . . . . . . . . . . 11

6.3.4 Granularity . . . . . . . . . . . . . . . . . . . . . . . . 12

6.3.5 With Predication . . . . . . . . . . . . . . . . . . . . . 13

6.3.6 With Data Speculation . . . . . . . . . . . . . . . . . 13

6.3.7 Compiler-Assisted . . . . . . . . . . . . . . . . . . . . 13

6.4 Microarchitecture Examples . . . . . . . . . . . . . . . . . . 14

6.4.1 Hardware: Classically-Based . . . . . . . . . . . . . . 14

6.4.2 Hardware: Non Classically-Based . . . . . . . . . . . . 16

6.4.3 Multiprocessors . . . . . . . . . . . . . . . . . . . . . . 18

6.4.4 Functional or Logic Language Machines . . . . . . . . 19

6.5 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.5.1 Branch Prediction . . . . . . . . . . . . . . . . . . . . 20

6.5.2 Confidence Estimation . . . . . . . . . . . . . . . . . . 20

6.5.3 Pipeline Depth . . . . . . . . . . . . . . . . . . . . . . 20

6.5.4 Implications of Amdahl’s Law - ILP Version . . . . . . 21

6.5.5 Memory Bandwidth Requirements . . . . . . . . . . . 22

6.6 Status, Summary and Predictions . . . . . . . . . . . . . . . 22

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1





Chapter 6

Multipath Execution

Augustus K. Uht
University of Rhode Island

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
6.2 Motivation and Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
6.3 Taxonomy and Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.4 Microarchitecture Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.6 Status, Summary and Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Introduction

To branch or not to branch? Why not do both?
These are the essential questions Riseman and Foster asked in their classic

paper on performance and cost limits on the execution of branchy code[1].
They had been stymied by the intractability of getting any kind of reasonable
performance from branch-intensive code, and sought to find out just what the
performance and hardware cost limits were.

Riseman and Foster performed many simulations on typical branch- or
control-flow intensive code (SPEC was not then in existence) to study ea-
ger execution. In this scenario, whenever the program counter (PC) comes to
a branch, execution continues speculatively down both sides or paths of the
branch. The incorrect path’s results are discarded when the branch condition
is evaluated (the branch is resolved). This operation is repeated indefinitely
(and recursively), limited only by the resources of the target machine.

Riseman and Foster determined that for unlimited resources, e.g., Process-
ing Elements (PE), pure eager execution would completely eliminate branch
delays and result in very high performance; in their measurements they found
that the harmonic mean Instruction-Level Parallelism (ILP) of such eagerly
executed general-purpose code was about a factor of 25. That is, an eager
execution machine could execute 25 single-cycle instructions in one cycle.

However, the catch-22 of the situation was that the only way to get a
sizeable fraction of this high performance was to use excessive resources. This
is due to the construction of the execution branch tree. Starting from one
unresolved branch, the number of active paths grows exponentially with the

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1



2 Speculative Execution in High Performance Architectures

depth of branches encountered. The result is the well-known binary tree.
Eager execution’s cost was so abysmal that it discouraged further investi-

gations into reducing branch penalties for about a decade. Eager execution is
the first known general form of multipath code execution. However, a limited
form was implemented for instruction-fetching only, somewhat earlier, in 1967
in the IBM 360/91 [2].

In general, multipath execution is the execution of code down both paths of
one or more branches, discarding incorrect results when a branch is resolved.
There are many dimensions to the differences between the many types of
multipath execution. This chapter explores these dimensions.

The remainder of this chapter is organized as follows. In Section 6.2 we
further motivate our study of multipath execution, and present its basic con-
cepts and terminology. Section 6.3 presents a taxonomy of the dimensions
and types of multipath execution. This section also contains a description of
the little multipath theory that exists, in part of subsection 6.3.1.3.1. Some
of the known microarchitectural implementations of multipath execution are
examined in Section 6.4. Key issues that multipath execution raises are dis-
cussed in Section 6.5. Section 6.6 suggests some areas for future multipath
research, and presents our own personal multipath prognoses.

6.2 Motivation and Essentials

Most forms of multipath execution use some form of branch prediction,
presented earlier in this book. In typical speculative execution a branch’s
final state, taken or not-taken, is predicted when the branch is encountered.
Then execution proceeds only down the predicted path. This can be repeated
for any number of dynamic branches, constrained only by machine resources.
This is called single path or unipath execution; see Figure 6.1 tree (a).

Multipath execution differs from unipath execution in that both paths of a
branch may be speculatively executed simultaneously. Thus, multipath execu-
tion is a branch predictor’s way of hedging its bets: if the prediction is wrong,
some or all of the other path has already been executed, so the machine can
use the not-predicted path’s results immediately. Thus, any branch mispre-
diction penalty normally occurring in unipath execution is either reduced or
eliminated, improving performance. Other branch-penalty reduction methods
such as predication, discussed in a prior chapter, can also be combined with
multipath execution, further improving performance.

Speculative code can consist of both multipath and unipath sections; that is,
execution may proceed down one or both paths of a branch, and this situation
may change over time. This may sound odd, but there are sound theoretical
and practical reasons for doing this, as we will see.



Multipath Execution 3

Confidence estimation [3] of a branch prediction has played a key role in
some multipath implementations. For example, a branch might only be ea-
gerly executed (multipath execution) if its predictions are frequently wrong,
that is, when there is little confidence in their accuracy; otherwise, the branch
only executes down the predicted path (unipath execution).

We now briefly return to our discussion of multipath’s performance poten-
tial; the latter can generally be summarized as the amount of Instruction-Level
Parallelism (ILP) present in the typical code to be executed by a target ma-
chine. How well a microarchitecture exploits this potential parallelism is the
number of Instructions Per Cycle (IPC) the microarchitecture actually exe-
cutes and yields from the potential ILP. There have been numerous ILP limit
studies over the years, e.g. [1, 4], demonstrating very high levels of ILP if
the ill effects of control flow can be alleviated[5]. ILPs in the tens or even
hundreds have been found.

A word or two on terminology. A branch path consists of the dynamic code
between two conditional branches with no intervening conditional branches.
This is similar to but different from the more common basic block. They are
usually about the same size.

When a branch is forked execution proceeds down both paths of the branch
at the same time. When the two paths begin execution at different times,
then the later path is spawned from the branch. Lastly, a branch is split if
either the branch is forked or spawned; it includes both possibilities.

6.3 Taxonomy and Characterization

We now present the various taxonomical dimensions of multipath execution
and analyze the characteristics of each dimension’s attributes. Sample mul-
tipath branch trees are shown in Figure 6.1. The taxonomy is summarized
in Table 6.1; it includes example machines and methods and their classifica-
tions, as well as cross-references to both corresponding text sections and to
representative trees in Figure 6.1. Referring to the Figure, a tree’s Mainline
path is the complete group of predicted paths starting at the root of the tree;
in other words, it is the most likely path of execution. A group of paths split
off of the Mainline path via one not-predicted branch is call a Sideline path.

In general, multipath execution can be applied to all types of branches: con-
ditional, unconditional, calls, returns, indexed, indirect, etc. In practice, only
two-way conditional branches are usually split. The other kinds of branches
can either be treated as special cases of conditional branches or as unsplitable.
N-way branches can sometimes be split by using the compiler to convert them
to combinations of two-way conditional branches. An example is the binary
code implementation of switch statements.



4 Speculative Execution in High Performance Architectures

1

1 1 1

1

1 1 1

6

4 1

1

1

2

2

1

2 22 2

3

3

3 33 33 33 3
4

5

5

7

9

6

6

7

8 8 8

.7

.7 .7

.7

.7

.49

.49

.34

.34

.15 .15 .15

.21

.24

.24

.17

.17

.12

.12

.3 .3

.3

.3

.21

.08

.34 .027

.7

.7.7

.7
.3

.3

.3

Unipath
Pentium 4

7 paths
depth = 7/0/0

(a)

Skewed - Static
Disjoint Eager Execution (DEE)

12 paths
depth = 6/3/0

(d)

Skewed - Static
Eager Prediction

9 paths
depth = 5/2/0

(e)

Skewed - Static
Avid (typ.; k=2)

14 paths
depth = 5/2/1

(f)

Skewed - Dynamic
Confidence Prediction

9 paths
depth = 5/*/0

(h)

Skewed - Pseudo-Random
Levo - D-paths; Functional Language

11 paths
depth = 5/*/0

(i)

Skewed - Static
Avid (alt.; k=5)

20 paths
depth = 5/5/1

(g)

General Balanced Tree
Magid

14 paths
depth = 3/3/1

(b)

et al
Simple Balanced Tree

Y-Pipe
2 paths

depth = 1/1/1

(c)

predicted
Mainline

not-predictedpredicted
other

[path] depth = Mainline/
Sideline (max.)/
Sideline (min.)

Legend:
Branch Paths:

Circled #’s: order of resource assignment.   Uncircled #’s: cumulative probabilities (cp).

FIGURE 6.1: Some possible branch trees.
Notes: All of the trees are multipath trees except (a).

The text beneath a tree indicates the following:
Line 1 - Tree name/classification
Line 2 - Tree implementation example: machine or method
Line 3 - Number of branch paths in the sample tree, which

will vary with a machine’s design or operation
Line 4 - Depth three-tuple - See the right side of the Legend.

These, too, may vary. (‘*’: dynamically variable).



Multipath Execution 5

TABLE 6.1: Multipath taxonomy and machine/model characteristics.

Section:

6
.1

6
.4

.1
- 6
.4

.1
.1

- 6
.3

.1
.3

.3
6
.3

.1
.3

.3
6
.3

.4
.2

6
.4

.1
.2

6
.4

.1
.3

6
.4

.2
.1

6
.3

.1
.3

.2
6
.4

.2
.4

6
.4

.2
.3

6
.4

.2
.5

6
.4

.2
.6

- 6
.3

.7
6
.4

.3
.1

6
.4

.3
.1

6
.4

.3
.2

6
.4

.4

Section

Machine/Study:

Dimension/
Characteristic R

is
em

a
n

et
a
l

[1
],

1
9
7
2

IB
M

3
6
0
/
9
1

[2
],

1
9
6
7

IF
et

ch
-D

E
E

[6
],

2
0
0
3

Y
-P

ip
e

[7
],

1
9
9
2

E
a
g
.

P
rd

ct
.

[8
],

1
9
9
4

S
el

.
D

u
a
l
[9

],
1
9
9
6

L
im

.
D

u
a
l
[1

0
],

1
9
9
7

T
M

E
[1

1
],

1
9
9
8

P
o
ly

P
a
th

[1
2
],

1
9
9
8

P
ri

n
ce

P
a
th

[1
3
],

1
9
9
8

M
a
g
id

et
a
l

[1
4
],

1
9
8
1

D
E

E
[1

5
],

1
9
9
2
-9

5
A

B
T

[1
6
],

1
9
9
8

L
ev

o
[1

7
],

2
0
0
0
-0

3
A

v
id

/
K

in
[1

8
],

1
9
9
7

D
C

E
[1

9
],

2
0
0
1

C
D

E
[2

0
],

2
0
0
3

D
a
n
S
o
ft

[2
1
],

1
9
9
7

D
y
n
.

C
M

P
[2

2
],

2
0
0
3

S
li
p
.

C
M

P
[2

3
],

2
0
0
1

M
P

D
E

E
[2

4
],

1
9
9
6

P
ro

lo
g

[2
5
],

1
9
9
5

6.3.1 Tree geometry f ?
Figure 6.1 tree: b c h c e h b h h h b d h i g h ? h h c d i

6.3.1.2 Balanced tree
√ √ √ √

6.3.1.3 Skewed
√

6.3.1.3.1 Theory-Based
√

6.3.1.3.2 Heuristic:Static
√ √ √ √

6.3.1.3.3 Heuristic:Dynamic
confidence-based

√ √ √ √ √ √ √ √ √
6.3.1.3.4 Pseudo-Random

√ √ √
6.3.2 Path ID ? ? ? ? ?
6.3.2.1 Binary Tag
6.3.2.1.1 Taken/Not-T.

√ √ √ √ √ √ √ √ √ √
6.3.2.1.2 Predicted/Not-P.

√ √
6.3.2.2 Implied

√ √ √ √ √
6.3.2.3 Other ID
6.3.2.3.1 Thread

√ √
6.3.2.3.2 Process

√ √
6.3.3 Phases of Operation
6.3.3.1 Pipe Stage ?

Split/Live/Prune/All
Pre-Fetch P
I-Fetch S A A S S S S S S S S S S A S
Decode L P L ? L L L L L A L L
Execute P P P P P P L P A P A P P P A A S
D-cache P P P

6.3.3.2 Disjoint
√ √ √ √ √

?
√

6.3.4 Granularity
6.3.4.1 Fine-Instruction

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
6.3.4.2 Thread

√ √
6.3.4.3 Coarse-Procedure

√ √
6.3.4.4 Process

√ √
6.3.4.5 Function

√
6.3.5 Predication

√ √ √ √ √
6.3.6 Data Speculation

√ √
6.3.7 Compiler-Assisted

√ √ √ √
Scheduling

√
? ?

√ √
Confidence Hints ?

√

6.3.1 Branch Tree Geometry

Perhaps the greatest differentiator of multipath execution schemes is the ge-
ometry of the ‘live’ branch tree. This geometry is formed by the pattern of un-



6 Speculative Execution in High Performance Architectures

resolved conditional branches in the machine. Resolved conditional branches
can be present in the tree, but they do not delineate branch paths in the
tree; only unresolved conditional branches do that. Many branches can be
live at the same time; exactly how many depends on the particular machine
implementing the tree, and the code dynamics.

Branch trees fall into one of three broad categories: unipath, balanced mul-
tipath and skewed multipath. In the following discussion refer to Figure 6.1
for pictures of various styles of branch trees.

In the Figure an uncircled number next to a branch path is the path’s cumu-
lative probability (cp) of execution, formed by multiplying the corresponding
branch’s Branch Prediction Accuracy (BPA) by the cp’s of other branch paths
between it and the root of the tree. For the sake of illustration, a BPA of 70%
was used for all of the branches; a typical BPA is much higher, say 90%.

A circled number next to a branch path in the figure is the branch path’s
priority for resources. A lower number is a higher priority.

6.3.1.1 Unipath Tree

The unipath (Single Path[15]) tree is both a reference point and is fre-
quently used as part of multipath trees. Unipath execution is just simple
branch prediction: when a branch is encountered, its direction is predicted
and execution proceeds only down the predicted path. This process is usually
repeated.

The net result of the latter effect is to decrease the usefulness of instructions
executed in lower paths of the tree (later in time). This is indicated by the
rapidly decreasing cumulative probabilities of the branch paths as the depth
of prediction or speculation increases.

6.3.1.2 Balanced Multipath Tree

Riseman and Foster’s[1] eager execution tree, discussed in Section 6.1, is
the canonical example of a balanced branch tree. Every branch encountered
is forked to its two paths, one corresponding to the taken direction of the
branch, and the other path to the not-taken direction of the branch.

The major disadvantages of a balanced tree is its exponential growth in
required execution resources as the branch depth increases, and its relatively
low performance. The latter is due to the small cumulative probabilities of
most of the tree’s branch paths. Their results are not likely to be needed.

An advantage of a balanced tree is that since branches are always forked,
it does not use a branch predictor. This is true only for balanced trees.

An example machine using a single-level balanced tree is the Y-Pipe machine[7];
see tree (c) in Figure 6.1. Only one branch is forked at a time. An example
of a multi-level balanced tree implementation is Magid et al ’s machine[14].



Multipath Execution 7

6.3.1.3 Skewed Multipath Trees

The latter two sections discussed the two extremes of branch tree construc-
tion. Both unipath execution and balanced trees have serious problems in
high-performance microarchitectures: they both exhibit diminishing returns
with increasing available resources.

Skewed trees are the middle ground of multipath trees; they make up the
bulk of the trees realistically considered for multipath execution. We classify
a skewed tree into one of the following categories: Theory-Based, Heuris-
tic:Static, Heuristic:Dynamic or Pseudo-Random.

6.3.1.3.1 Theory-Based A theory-based machine’s tree construction is
based on some mathematically-based principle, e.g., a tree-construction the-
orem minimizing resource usage.

An example is the dynamic DEE tree. The idea is to assign branch path re-
sources, such as Processing Elements (PEs) to the most likely-to-be-executed
branch paths first, that is, those paths with the greatest cumulative proba-
bilities. (An example of this construction, but with constant probabilities, is
given in the next section). This assignment was proven to be theoretically
optimal, giving the best performance for constrained resources[15], where the
quantity of resources is directly proportional to the number of branch paths
in the tree.

DEE is also shown to be theoretically optimal or close to optimal in related
situations in [26]. Further, Gaysinsky et al [27] considered block fetching in
file systems by looking at the theoretical implications of combined pipelining
and caching. Depending on the assumptions made, DEE is shown to be either
a theoretically-optimal or at least a near-optimal scheduling algorithm.

Theory-based machines tend to have dynamically-changing branch trees;
see Figure 6.1 tree (h). The advantage of these machines is that they may
operate beautifully[16], but the empirically-observed disadvantage is that they
tend to be costly and complex.

6.3.1.3.2 Heuristic:Static Some possible heuristic:static configurations
are shown in Figure 6.1, branch trees (d)-(g). These trees’ shapes are based
on some heuristic and fixed at machine design-time (static).

The static DEE tree (d) is a heuristic of the theoretically-optimal dynamic
DEE tree discussed in the last section. The static DEE tree is a dynamic DEE
tree having all of the branches’ BPAs equal. In operation, at the root branch
the predicted path (0.7 > 0.3) is assigned the first resources after the branch
has been predicted; the cp of path one is the largest of the outstanding paths.
Likewise, the next branch is predicted yielding a predicted-path having a cp
of 0.7 ∗ 0.7 = 0.49 and a not-predicted path with a cp of 0.7 ∗ 0.3 = 0.21.
Hence, the 0.49 path is the path with the second largest cp, so it gets the
next set of resources, as indicated by its circled ‘2’. This process continues
until we have exhausted the available resources. It becomes interesting after



8 Speculative Execution in High Performance Architectures

the fourth branch has been predicted, yielding the 0.24 cp predicted path.
Now, in this case 0.24 < 0.3 of the not-predicted path of the first branch, so
the latter is assigned resources next, as indicated by the circled ‘4’. This is
the time-‘disjoint’ resource assignment of disjoint eager execution.

In a real dynamic DEE tree the BPA of one branch is likely to be different
from the BPA of another, so instead of the tree having the nice pseudo-
symmetric shape shown in (d), a dynamic version of the tree might look
something closer to tree (h). Tree (d) is suboptimal, BUT, it has the nice
heuristic property that with the statically-fixed cp’s the shape of the tree
can be fixed at machine design time, and no dynamic cp calculations need
be done. These calculations would otherwise entail many costly and slow
multiplications whenever the tree is dynamically modified.

The ‘statically-fixed shape’ attribute is what makes heuristic:static trees so
attractive, regardless of their actual shape. Both cost and time are saved, and
operation is simplified. The static DEE tree of (d) is nice in particular since
it is an approximation of a theoretically-optimal tree, and hence gives good
performance[15]. An example of static DEE tree code execution is shown
in Figure 6.2. Especially note the lack of a significant branch misprediction
penalty.

6.3.1.3.3 Heuristic:Dynamic In this category a branch tree is formed
dynamically by some heuristic; see Figure 6.1 tree (h). This is perhaps the
most common form of multipath execution.

The most common operational example[9, 10, 12] is confidence-based fork-
ing. When a machine fetches a branch, not only is it predicted but the quality
of the prediction is checked with a confidence estimator; see Section 6.2. If
the branch confidence is low, the branch is forked and execution proceeds
down both paths. Otherwise, unipath operation is assumed and the branch
is executed in the predicted direction.

Either one[9, 10] or multiple[12] forked-branches can be live at the same
time. In the former case, tree (h) would only show one forked branch. Single
forked-branch machines are simpler and less costly than the multiple forked
ones, but give lower performance.

6.3.1.3.4 Pseudo-Random Pseudo-random trees are a by-product of phys-
ical constraints. For example, Levo’s[17] branch tree is a physically-based
heuristic on top of the static DEE tree heuristic; see Figure 6.1 tree (i) and
Section 6.4.2.3. The branch tree then has a less obvious structure.

Since pseudo-random trees are tuned to a specific microarchitecture they
may provide high performance with ease of operation. However, it may be
hard to analyze such a tree to estimate a paper machine’s performance.



Multipath Execution 9

wall clock time

program
-ordered

execution tim
e

A. Start:
nothing

executed.

B. Three
branch
paths
being

executed
The DEE-tree
starts to spawn
execution on
select not-

predicted paths.

MPMP MP MP

C. Mispre-
diction (MP)

reached.
Lowest three

DEE-tree
paths now
executing

wrong code.
DEE tree
now has
complete
spawned

path results
for three
branhes.

D. DEE-tree
continues to

execute
predicted

path.

E. The mis-
prdicted

branch MP
resolves (R),

but there is no
stall and

since two
of the not-

predicted paths,
and

have already
executed.

little
effective

mispredition
penalty

m n,

F. As a result of the R
resolution,

, and the dynamic
code path ‘straightens
out,’ as indicated by
the position changes
of the and paths.

The dotted lines
indicate new- ( ),

or re-execution
( and ).

is no longer
needed.

the second
spawned DEE path

becomes the Mainline
path

m n

h

i, j, p, q, r
k

R R

NOTES:

1.  Each arrow is a branch path.
2.  Branch targets are at the arrowheads.
3.  Solid and dotted arrows comprise the static DEE tree.
4.  Dashed arrows comprise the dynamic code execution.
5. Vertical arrows (pointed down) are paths.
6. Angled arrows (to the right) are paths.

predicted
predictednot-

7. A branch prediction accuracy of about 70%
assumed for illustration purposes.

8. The dynamic code has one misprediction.
9. At F., DEE is two branch paths ahead in

execution after the misprediction, as
compared to a unipath execution.
(Pipeline  effects are not included.)MORE NOTES:

a. Execution occurs only on the solid and dotted paths, that is, the DEE tree paths.
b. Correct execution occurs only where a solid (DEE tree) path is ‘over’ a dashed (actual) code execution path.
c. The and results are corrected as needed, also reducing the effective misprediction penalty.i, j, p, q, r

m

m

l

l
n

n

p

q

r

i

j k

m

n

l

p

q

r

i

jh

FIGURE 6.2: Static DEE tree[15] operating on a dynamic code stream.

6.3.2 Branch Path/Instruction ID

6.3.2.1 Binary Path Tag

In multipath execution a tag is used to uniquely identify an instruction’s tree
branch-path of origin (where it came from). This tag differentiates versions



10 Speculative Execution in High Performance Architectures

01

11 0110 00

111 011101 001110 010100 000

Position numbers
in the tags: Level:

0 0

01 1

012 2

Legend: taken branch (1) not-taken branch (0) Position 0 is the most
significant position.

FIGURE 6.3: Typical Branch Path ID numbering scheme.

of the same static instruction and is used for pruning. Figure 6.3 shows the
most common tag numbering schemes’ foundation. Normally, branch paths
are indicated by a path ID tag.

The path ID tags use the path labels shown in the figure, one ID position
per level. These tags use the fewest number of positions needed to identify
a path, i.e., one position for level 0, etc. For ease of use there may be as
many positions as levels. A two-bit per position encoding can be used to
distinguish among three possible cases: branch taken, branch not-taken and
branch invalid (‘X’), e.g., [12]. The ‘invalid’ case occurs if a branch has not
yet been predicted or has been resolved. From the figure, an example of this
3-valued tag using all positions would be: ‘0XX’ for the level 0 not-taken path.

For a pruning example, assume that the tree of Figure 6.3 is indicative of
the current live branch paths throughout the processor. Now say the second
branch at the top of level 1 is mispredicted not-taken. Then the path ID tag
corresponding to the mispredicted path tag, ‘00X’ is broadcast throughout
the processor. Instructions compare their path ID tags to the broadcast tag,
ignoring the ’X’ positions. All instructions having matching values for level
positions 0 and 1, ‘00*’, know that they are on the mispredicted path or
its descendents’ paths and are pruned (their results are discarded and their
resources re-allocated). Other paths’ instructions continue execution.

Whenever the root branch resolves, all of the tags in the machine are shifted
left by one position. This frees up ID space on the right of the tags for new
branches on the new, lowest level. The elegance and ease of operation of the
overall scheme explains why it is so widely used.

6.3.2.1.1 Taken/Not-Taken Path ID’s typically directly indicate branch
execution direction. This can help with multipath operation.

6.3.2.1.2 Predicted/Not-Predicted Considering branches as predicted
or not-predicted abstracts away the actual direction of a branch, making such



Multipath Execution 11

a scheme especially suitable for theoretical analysis and general multipath
execution modeling, e.g., Figure 6.1.

6.3.2.2 Implied

Some machines use ID tags to indicate other speculative entities in the
machine; thus, actual branch path ID’s are implied. For example, Levo uses
ID tags for speculative groups of instructions whether they share the same
branch ancestors or not; see Section 6.4.2.3.

The decision to use explicit or implicit tags is mainly dependent on the
details of a specific microarchitecture.

6.3.2.3 Other ID

The basic branch path ID tag can be augmented with tags for other pur-
poses, e.g., to exploit other levels of parallelism. Different threads and pro-
cesses may also be active in a machine at the same time, share resources, and
thus append thread and process ID’s to instruction path ID tags to completely
differentiate instruction instances.

6.3.2.3.1 Thread The actual construction of a thread ID for a multipath
machine is implementation dependent, but it is not hard[11, 18].

6.3.2.3.2 Process Process ID construction is also not hard[18]. It can
be as simple as appending the process ID or equivalent from the Translation
Look-Aside Buffer (TLB) to the path ID tag. In existing microarchitectures
the process ID may already be part of an instruction tag.

6.3.3 Phases of Operation

In this section we mainly consider the three phases of multipath operation,
namely when/where in a machine: a branch is split, multiple paths are live
and operate, and path pruning is performed after a branch resolves.

6.3.3.1 Pipeline Stage(s)

Table 6.1 shows common pipeline stages and where multipaths Split, are
Live, and are Pruned for the example machines. Note that a particular ma-
chine may have a multipath phase be active in more than one stage, be active
throughout a stage, or be active just at the beginning or end of a stage.

Phase location affects the benefits a machine gets from multipath operation.
Intuitively, the longer the multipaths stay speculative, the better the perfor-
mance but the greater the cost and complexity of operation. However, the
precise relationship of performance to phase operation or location is unknown.

In the table the execution stage is assumed to include memory loads, spec-
ulative or not. Stores in the execution stage are always speculative.



12 Speculative Execution in High Performance Architectures

Speculative memory caches[28] allow multipath execution to go about as
far into the memory system as possible, at least with near-in technology.
However, this may be undesirable, since every version of a store may be sent
to the speculative cache, increasing data bandwidth requirements.

Pruning can be done in a single location or be distributed among the sec-
tions of a machine, depending on the details of the machine. Classically-based
(superscalar) machines such as PolyPath[12] often perform pruning in one lo-
cation; this keeps the operation simple although it may create a bottleneck and
lengthen cycle time. Non-classical machines such as Kin[18] may distribute
pruning throughout the execution stage, avoiding a bottleneck.

6.3.3.2 Disjoint Splitting

The vast majority of multipath machines do not split paths at different
times, i.e., they are not disjoint (they don’t spawn paths), but always fork
paths. Forking is a straightforward way to implement splitting.

However, DEE theory tells us that forking is usually suboptimal, and that
spawning the second path at a different time may be preferable; it works for
Levo (see Section 6.4.2.3). In the final analysis, whether or not spawning is
worth doing likely depends on an individual machine’s characteristics.

6.3.4 Granularity

6.3.4.1 Fine-Instruction

The vast majority of past and present multipath schemes operate on indi-
vidual instructions. This is quite natural, since the basic enabler of multipath
execution is the branch instruction, a fine-grain element itself.

6.3.4.2 Thread

Early on, multithreaded-machine researchers realized that unused hardware
thread-resources could, with a little extra effort, also be used for speculatively
executing a Sideline path in other threads[11], that is, realize multipath ex-
ecution. A mixture of threads from both the same and different programs
can be active simultaneously, so that both throughput and single-program
performance improve.

6.3.4.3 Coarse-Procedure

I know of only one study or machine using this level of granularity, that
of Hordijk and Corporaal[24]. Briefly, they used a compiler to partition a
program into tasks, where each task was a procedure. A procedure invocation
corresponds to how we have been viewing branch splitting. They simulated
the resulting code on a multiprocessor model, using a DEE construct, and
obtained an ILP of about 65. To achieve this the DEE tree only needed to go
three levels deep. (Presumably, this means three nested procedure calls.) It



Multipath Execution 13

was primarily a limit study. We will return to this work in Section 6.4.3.2. It
appears that there is a lot of potential here, and that it has implications for
multipath execution on Chip Multiprocessors (CMP).

6.3.4.4 Process

Not much work has been done on multipath execution at the process level,
to my knowledge. The closest work is the Kin processor[18], targeted to
execute instructions from different processes simultaneously, but this is not
necessarily executing processes down multiple paths.

6.3.4.5 Function

Functional-language and logic-language machines can benefit from a type
of multipath execution called eager evaluation. (Unfortunately, over the years
‘eager execution’ and ‘eager evaluation’ have often been used interchange-
ably or with their opposite meanings. We use the current seemingly-accepted
definitions; see Section 6.4.4.) A function’s evaluation is the basic unit of
granularity for such machines. Tubella and Gonzalez[25] show that judicious
use of eager evaluation can lead to substantial performance gains.

6.3.5 With Predication

Predication exhibits synergistic gains with DEE[15]. Intuitively, predica-
tion should add to the cost and complexity of a machine. However, it could
be argued that Levo’s implementation of hardware-based predication is ac-
tually simpler and cheaper than a more classical approach to typical branch
execution. Predication is uncommon in hardware-based multipath machines,
while it is common in software-based multipath methods; see [29].

6.3.6 With Data Speculation

Levo uses a data speculation/multipath combination. While little perfor-
mance gain has been realized to date, the combination has great potential;
IPC speedups of a factor of 2-3 may be possible[30].

6.3.7 Compiler-Assisted

Little work has been done here. The Trace Scheduling-2 multipath compiler
was proposed for VLIW machines, but the compiler complexity proved to be
daunting[29]. The proposed DanSoft machine[21] uses a simple mechanism of
statically-generated confidence hints from the compiler to help the processor
determine whether or not to dynamically fork a branch for dual-path I-Fetch.



14 Speculative Execution in High Performance Architectures

6.4 Microarchitecture Examples

The examples are categorized into four sections. Hardware: Classically-
Based concentrates on multipath machines based on typical superscalar cores.
Although they are easy to build, they are not likely to provide substantial per-
formance gains. (“If you want big changes, you have to change a lot.”- after
Prof. Donald Hartill.) The Hardware: Non Classically-Based section looks at
many multipath machines with radically new processor cores. In the Multipro-
cessors section we examine several approaches to multipath multiprocessors.
We end with something completely different: Functional or Logic Language
Machines.

6.4.1 Hardware: Classically-Based

The IBM 360/91 [2] is an early example of multipath execution; it kept dual
paths for instruction fetch. While multipath execution restricted to instruc-
tion fetching or pre-fetching continues to be used in some current microarchi-
tectures, this is done usually to keep such classical superscalar pipelines fed
with instructions; thus, no big performance wins are likely.

However, an exception to this is the Y-Pipe machine[7]. We also discuss
two high-end multipath machines based on superscalar cores.

6.4.1.1 Y-Pipe

The Y-Pipe machine[7] is one of the earliest and simplest of modern mul-
tipath machines. Y-Pipe assumes a simple five-stage pipeline (IF-ID-EX-M-
WB), and the ability to fetch two instructions in one cycle. Y-Pipe achieves
0 cycle (no) branch penalty without a branch predictor as follows.

The code is scheduled so that every conditional branch will be dynami-
cally immediately preceded by its associated compare instruction, and not
another conditional branch. At run time, every conditional branch is forked
at instruction-fetch. Its dual paths stay live until the end of the decode stage,
when the branch’s compare instruction has just executed, the branch is re-
solved, and the wrong path is pruned. Thus, there is no branch penalty! And
without a branch predictor!

Y-Pipe may be ideal for embedded applications with its low cost, likely
low-power, relatively high performance and deterministic branch penalty (0
cycles). The latter is a great attraction for embedded systems’ real-time
programming. The dual instruction-fetch per cycle requirement is less of an
issue in an embedded environment.



Multipath Execution 15

6.4.1.2 Polypath

The advanced Polypath machine is an implementation of Selective Eager
Execution (SEE) [12]. Polypath can simultaneously follow many more than
two paths at one time. Branches can resolve out-of-order. Polypath’s front-
end uses a JRS confidence estimator[3] to make the fork/no-fork decision.
While predictable branches stay unipath, unpredictable branches (low confi-
dence) are forked and executed simultaneously.

Polypath uses a context tag to show instruction’s branch history; this tag is
a version of the path ID labeling scheme of Section 6.3.2.1. Every instruction
proceeds through the execution stage with its tag. Thus, typical register
operation structures can be used, suitably augmented to store context tags.

Functional units send forked branch resolution information to the instruc-
tion window on branch resolution buses, one bus for each resolution desired
per cycle. If a mispredicted branch’s path tag is received by the window, the
mispredicted path and its descendents are pruned and their results squashed.
Mispredicted low-confidence multipath branches exhibit no branch penalty
since they are forked. Mispredicted high-confidence unipath branches have
the same (high) penalty as a pure unipath processor.

The added hardware is somewhat costly and complex, though not a large
fraction of the overall cost of the core. The added performance is modest. In
simulations fetch bandwidth was kept the same for both uni- and multipath
machines, perfect caches (no misses) and perfect memory disambiguation were
assumed, and the processor was 8-way issue, with many functional units. The
overall performance improvement was about 14%, from 3.85 to 4.4 IPC, from
a unipath to a multipath model, respectively. The low accuracy common to
confidence estimators likely contributed to wasted resources or missed forking
opportunities and hence low performance gain. I-Fetch memory bandwidth
requirements increased substantially.

6.4.1.3 PrincePath

PrincePath[13] [our name, for “Princeton multiPath”] is similar to the Poly-
path machine. PrincePath also uses confidence estimation[3] to select which
paths to fork at I-Fetch time, and allows multiple forked paths to be live at
any given time. The equivalent to context tags is also used. As is typical
equal priority is given to the forked paths, that is, disjoint splitting is not
used; see Section 6.3.3.2.

Unlike the Polypath machine, PrincePath uses a global ARB (Address Res-
olution Buffer) [28] in front of the memory system to hold speculative stores
suitably tagged. Therefore, PrincePath is able to keep multiple paths alive for
probably the longest time realistically possible. When pruning occurs if the
resolving branch is the earliest unresolved branch in the machine, the wrong
path store versions in the ARB are discarded and the non-speculative store is
committed to the remainder of the memory system.



16 Speculative Execution in High Performance Architectures

The simulations’ benchmarks were similar to those used in the PolyPath
simulations. The PrincePath results indicated that branches with a mispredic-
tion rate greater than 35% should be forked, with lower rate branches unsplit.
PrincePath achieved similar speedups to PolyPath: about 15.5% over the
baseline case. PrincePath is similarly likely constrained by classical super-
scalar assumptions. Speculative caching does not seem to me to help; this
may be due to short-lived speculative paths. PrincePath did not experience
a substantial increase in fetch bandwidth requirements.

6.4.2 Hardware: Non Classically-Based

6.4.2.1 Magid et al

Little was published on this machine[14]. We know that it is a proposed
implementation of the original Riseman and Foster eager execution model[1],
using a multi-level balanced tree. Since the pure eager execution model’s
required resources are so large for so little gain, the Magid machine would not
be likely to realize a high IPC. It may have been the first machine to use the
elegant binary path ID scheme described earlier in Section 6.3.2.1.

6.4.2.2 Condel-2-Based - Early DEE

The Condel-2 -based static DEE tree implementation[15] was an early ver-
sion of the Levo machine. Since this early version was costly, not scalable,
cumbersome to operate, and has been superseded by the current Levo, we will
not dwell on it. The machine was never simulated, although the static DEE
tree concept itself was[15]. DEE with MCD gave an ILP of about 30.

6.4.2.3 Levo - Current DEE

It is my experience that it is very hard to implement a realistic multipath
processor that follows the DEE theory closely. Thus, the Levo[17] imple-
mentation of multipath execution is a multipath heuristic on top of another
multipath heuristic; to wit, the Levo microarchitecture uses a modified version
of the standard static DEE tree, in particular a version that meshes well with
the rest of the Levo microarchitecture. Even with this double DEE approxi-
mation, Levo benefits greatly from multipath execution. Levo is described in
much greater detail in a later chapter of this book, so we will only describe
its broad characteristics here.

Figure 6.1 tree (i) is an approximation of Levo’s branch tree. It is pseudo-
random because the Sideline path lengths are not ordered by their size, as
is the case with the static DEE tree, tree (d). However, unlike tree (h), the
unresolved split branches’ predicted branch paths are all normally adjacent.

Unlike Levo, in most multipath machines a misprediction of a split branch
causes all of the instructions following the Sideline path’s instructions to be
flushed, and their results squashed. In Levo the Mainline instructions after



Multipath Execution 17

the mispredicted branch’s spawned path are not flushed nor are their results
discarded. Instead the spawned path broadcasts its result data forward to
cause the re-execution of only directly and indirectly dependent instructions.

Levo uses implied path IDs; sections of instructions have an ID correspond-
ing to either a part of the Mainline path or an entire Sideline path. Typically,
only 8 partial-Mainline and 8 Sideline-path are present, so the implied ID
tags are just a few bits long. Levo gave about 5 IPC with detailed simulations
using realistic assumptions, with the potential to realize IPCs in the 10’s.

6.4.2.4 Adaptive Branch Trees

The ABT machine proposal[16] is an implementation of the optimal dy-
namic DEE tree. The machine dynamically computes and updates the cumu-
lative probabilities of all of the branch paths in its window, assigning execution
resources to the most likely-to-be-used paths. The ABT machine does not use
reduced control dependencies ala either the Minimal Control Dependencies of
[15], or typical software or hardware-base predication.

ABT realization is difficult because of both the massive amount of computa-
tion necessary to keep the cumulative probabilities updated, and the difficulty
of the calculations needed to dynamically sort the branch paths by their cu-
mulative probabilities (to determine which path gets resources).

However, the ABT simulations partially verified the initial DEE work[15].
ABT with an optimal tree performed very well and better than the corre-
sponding suboptimal static DEE tree. Also, ABT didn’t perform substantially
better, indicating the usefulness of the static DEE tree heuristic.

6.4.2.5 Kin and Avid Execution

Kol devised and studied a new form of multipath execution called Avid Ex-
ecution, to be implemented in a novel asynchronous machine called ‘Kin’[18].
A typical Avid branch tree model is shown in Figure 6.1 tree (f). The two key
features of this tree are: every conditional branch is forked, and: the length
of each forked path is the same for every branch (with the caveat that forked
paths cannot exist past the end of the Mainline path).

Kol defines a parameter k equal to the length in branch paths of a forked
path. In tree (f) k = 2. Tree (g) is a special Avid case in which the forked
path depth is equal to the Mainline path length; in this case k = 5. We
will concentrate on the most useful configuration, tree (f). Kin’s multipath
operation is similar to others previously mentioned, except that the multipath
operation phases are organized a bit differently and are spread throughout
most of the machine; see the ‘Avid/Kin’ column in Table 6.1.

Limit-type simulations on some of the SPECint95 benchmarks including
gcc indicated speedups of about a factor of two for branch trees with k = 1
over k = 0. A k = 2 tree performed about the same as a k = 1 tree. These
simulations used a branch predictor with about a 90% BPA. Also interesting,
I-Fetch requirements actually DECREASED for trees with k = 0 to k = 1.



18 Speculative Execution in High Performance Architectures

The results are quite remarkable: little multipath execution needs to be
done for big gains. The DEE simulations gave similar results, and also showed
that branches tended to resolve at or close to the root of the DEE tree.
Combining the Avid and DEE results seems to indicate that less multipath
execution than either Avid or DEE used is needed for good performance.
Kol also suggests that a confidence estimator could be used to dynamically
vary the forked path length to further improve performance and resource
utilization; this was not simulated. Kol also states that the length could even
go to zero; I must disagree with this; at some point, every conditional branch
should be split. We’ll come back to these results and analyses in Section 6.5.4.

6.4.2.6 Dynamic Conditional Execution (DCE)

In general-purpose code simulations dos Santos et al [19] found that most
mispredictions are in short branches (little code between the branch and its
target) and most branches are short branches. They argued that most short
branches can fit in a reasonably sized cache line. So when a proposed ma-
chine fetches a line containing a short branch, the machine is also effectively
fetching down both paths of the branch automatically. Multipath execution
of these paths ensues. This is multipath execution with just about no extra
I-Fetch bandwidth requirements (maybe 0), and on the cheap. Some SPECint
simulations, including gcc, indicate that about a factor of two performance
gain over a standard superscalar machine may be possible. The proposed
machine is evolving, and the gains may increase. This idea is clever and most
promising.

6.4.3 Multiprocessors

6.4.3.1 Chip MultiProcessors (CMP)

Chidester et al [22] proposed a fine-grain multipath CMP containing eight
specialized processors. Compiler support is needed to insert special instruc-
tions for forking and other information into the machine’s programs. A map-
ping approach that worked well used one processor for the Mainline path and
the other processors for Sideline paths. Most of the performance gain was
realized with a small degree of forking. Some of the SPECint benchmarks, in-
cluding gcc, were simulated on the CMP; the average performance gain was
12.7%. The researchers found that the main inhibitor of performance was
the on-chip interconnect’s effect on the transmission latency of intermediate
results from one processor to another.

In another approach, Sundaramoorthy et al [23] proposed a CMP version of
confidence-estimation based dual-path execution. Two processors execute the
same program, just a bit differently: each processor executes a different path
of a low-confidence branch. When the branch resolves, only control-flow and
data-flow dependent state are transferred from the correct path processor
to the incorrect path processor. The transfer enables the processor on the



Multipath Execution 19

incorrect path to correct its results and to catch up to the correct path’s
processor, ideally before the latter reaches the next low-confidence branch.
While the design is elegant, the negative effect of the interconnect latency
resulted in a small performance gain, about 5% on gcc.

6.4.3.2 Coarse-Grain

We now return to Hordijk and Corporaal[24]’s study, first examined in Sec-
tion 6.3.4.3. To briefly review: they simulated a coarse-grain multiprocessor
consisting of individual ILP processors. Procedure calls were the basic unit
of granularity. The compiler did the partitioning. DEE execution was used.

Minimal Control Dependencies (MCD) (essentially predication) were used,
but it did not provide much benefit. This is in contrast to our fine-granularity
study[15] in which both MCD and DEE were needed to get the best perfor-
mance. This raises interesting questions for future research.

In the study, the basic assumption was that resources were infinite. (How-
ever, they found that the multipath level only had to be three procedures
deep to get most of the performance gain; so resources were in some sense
limited.) Data dependencies were honored, only RAW for register operands,
and RAW, WAR and WAW for memory operands. Perfect disambiguation
was assumed. A one-cycle communications latency was assumed; while this
is a bit optimistic for a multi-chip multiprocessor, it is certainly in the realm
of the possible for a CMP. Many SPECint benchmarks were simulated.

An oracle gave an average ILP of 66.7. The average ILP of the DEE ap-
proach without MCD was 63.0! cpp also did well with an ILP of 26.2.

In summary, this is a limit study with important significance for other mul-
tipath techniques, especially CMP. We have seen that most CMP approaches
are aimed at the fine-grain or instruction level. This places great constraints
on multipath CMPs’ design and operation. The Hordijk results just presented
argue strongly for coarse-grain multipath CMPs. This is intuitive: one wants
as little communications as possible between the processors of a CMP at oppo-
site ends of a chip. Much more work needs to be done to further characterize
multipath CMP operation, especially at the coarse-grain level.

6.4.4 Functional or Logic Language Machines

Such machines typically execute programs using lazy evaluation, in which
code is only executed non-speculatively, and only when its results are needed.
This is a very safe approach, but it severely limits performance.

The alternative is eager evaluation, in which as many paths as possible
execute code simultaneously, similarly to unlimited multipath execution on
an imperative machine. The major problem with eager evaluation is that in
operation the machine can completely run out of memory, then be unable to
execute down the lazy (Mainline) path, and deadlock occurs.

Tubella and Gonzalez[25] proposed the parallel execution of Prolog via a



20 Speculative Execution in High Performance Architectures

compromise between lazy and eager evaluation. Breadth-first execution is
done until resources are exhausted, then the mode of execution goes back to
depth-first; when resources again become available, eager evaluation resumes.
The tree shape can be dynamically changed for different program phases’
execution. No compiler or interpreter modifications are needed. An SPMD
machine model was used in the simulations. Speedups of x4-x63 over se-
quential execution were demonstrated for four Prolog benchmarks. The best
results were for more non-deterministic programs (analogous to imperative
programs with unpredictable branches).

6.5 Issues

6.5.1 Branch Prediction

Branch predictors are typically initially modeled and rated by themselves,
with the predictor-state updated immediately after every prediction. In such
a scenario predictors can give very high accuracies, say 95%. However, in a
real machine predictions occur early in the pipeline, while branch results are
not known until late in the pipeline. The resulting predictor-update delay can
be 10-20 cycles or more for a Pentium 4 class processor.

For example, the PrincePath machine (Section 6.4.1.3) used a nominally
accurate compound predictor having two two-level predictors, one local and
one global. With the inherent update delays, it only gave an effective average
BPA of 86.7% on the SPECint go, gcc, compress, li and perl benchmarks.

Since pipelines are getting deeper, effective BPAs will continue to decline,
increasing the benefits of multipath execution.

6.5.2 Confidence Estimation

Delayed updating likely affects confidence estimators similarly. However,
the situation is exacerbated since the confidence estimators start off providing
rather low accuracy estimations. Therefore it will be even less advisable in the
future to completely depend on confidence information for splitting decisions.

6.5.3 Pipeline Depth

Deeper pipelines not only have linearly increasing branch penalties with
depth, but the negative performance effects of such increased penalties grow
superlinearly with greater depth, due to the equivalent of Amdahl’s Law.
Multipath execution can greatly reduce the performance loss where unipath
execution does not; see the next section.



Multipath Execution 21

6.5.4 Implications of Amdahl’s Law - ILP Version

Amdahl’s Law is:
S =

1
fS + fP

P

Where: S is the net overall speedup, P is the speedup of the parallel code
region, and fS and fP are the fractions of the Serial and Parallel code regions,
respectively. As is well known, this expression tells us that a relatively small
sequential region or fS can result in a big drop in performance. Something
similar happens in pipelined machines, where the effective branch penalty
corresponds to Amdahl’s sequential code. (These are, of course, just rough
analytical models.)

Reformulating Amdahl’s Law for ILP pipelined machines, we get:

R =
1

cMIS + cP

P

Where: R is the net execution rate in IPC, cMIS is the extra cycle fraction due
to the misprediction penalty, cP is the cycles per instruction due to normal
non-mispredicted execution, and P is the Oracle parallelism, i.e., IPC with
no mispredictions. We assume that P includes any parallelism bottlenecks in
the machine, e.g., limited issue-width. Expanding:

R =
1

tMIS∗(1−BPA)
BPL + 1

P

tMIS is the effective misprediction penalty in cycles, BPA is the Branch Pre-
diction Accuracy and BPL is the Branch Path Length in instructions.

Only one or two mispredictions can kill the overall performance of a ma-
chine. A misprediction gives worse than sequential execution for a period
of time, it gives NO execution for that time. (Note that we are ignoring
predication and MCD in this analysis.)

Seeing what the R expression means, take: BPL = 6 instructions; use Prin-
cePath’s BPA = 0.867; take: P = 5 IPC; and, assuming unipath execution,
tMIS = 20 cycles, similar to a common Pentium 4. Then: R = 1.55 IPC. This
is just 31% of the peak performance.

Now, assume a PolyPath multipath implementation; not every branch is
forked but the misprediction rate is still reduced by a factor of two, i.e.,
(1 −BPA) is halved. Then: R = 2.37 IPC. This is much better, getting 47%
of the peak performance, an improvement of 53% over the unipath case, but
still not where we’d like to be.

Now consider Avid multipath execution with its fork depth k = 3 (see
Section 6.4.2.5). Then the effective branch penalty is: tMIS = 20 − (k ∗
BPL) = 2 cycles. Second-order effects such as double mispredictions do not
change this formulation significantly. Then: R = 4.09 IPC. This is 82% of
the peak performance, and an improvement of 164% over the unipath case.
Multipath execution can give great gains!



22 Speculative Execution in High Performance Architectures

It is likely that all conditional branches should be forced to split. This is
done in Avid, eager prediction and DEE, corresponding to the static trees
(d)-(g) of Figure 6.1. Confidence estimation is not likely to get the big gains.

6.5.5 Memory Bandwidth Requirements

6.5.5.1 Instruction Fetch

Different studies give conflicting indications of the multipath effects on I-
Fetch bandwidth. I believe that extra bandwidth is NOT necessarily needed.

Examining the static DEE tree model, we can readily see the possibilities.
The same instructions fetched for the Mainline path can be used for the Side-
line paths; no bandwidth increase here. Further, the Mainline path is much
shorter than the unipath of a conventional machine, so fewer instructions
need to be fetched there. Hence, multipath execution can actually lead to a
decreased I-Fetch bandwidth requirement!

6.5.5.2 Data Accesses

The overall effect of multipath execution on data bandwidth is not clear. It
has never been measured, to our knowledge. Intuitively multipath execution
will increase the necessary load bandwidth. However, explicit or implicit pre-
fetching, or load re-use, may even reduce load bandwidth requirements.

For in-order commit multipath machines store bandwidth should stay the
same or even decrease, since stores may combine before an actual commit.
For ooo commit, such as with speculative caches, store bandwidth may well
increase, since many speculative stores will be sent to the speculative cache.

Therefore, multipath machines need not require greater memory bandwidth
than classical unipath machines, and may even need less.

6.6 Status, Summary and Predictions

High-performance microprocessors are running out of options for improved
performance. There is little headroom for further substantive increases in
clock frequency. Increasing cache sizes is giving diminishing returns.

There is only one option: exploit more ILP. However, unipath methods
cannot do this, e.g., branch prediction is becoming a dead-end for greater
effective improved accuracies. We need multipath execution.

Fortunately, there is renewed interest in multipath execution[20]. Also,
existing research efforts are continuing at both our lab[17] and at others.

There are many promising areas of future multipath research, such as:
combining data speculation with multipath execution, deriving other opti-



Multipath Execution 23

mal forms of multipath execution, investigating new and existing multipath
heuristics, and studying coarse(r)-grain CMP machines. Multipath techniques
may also be applicable both to other areas of computer science and engineer-
ing, such as database engines, and even possibly even to other disciplines.

Multipath execution has come a long way since the IBM 360/91, and it’s
going to go farther. It will be standard in high-performance architectures.

References

[1] Riseman, E. M. and Foster, C. C. The Inhibition of Potential Paral-
lelism by Conditional Jumps. IEEE Transactions on Computers, C-
21(12):1405–1411, December 1972.

[2] Anderson, D. W., Sparacio, F. J., and Tomasulo, R. M. The IBM
System/360 Model 91: Machine Philosophy and Instruction-Handling.
IBM Journal of Research and Development, 11(1):8–24, January 1967.

[3] Jacobsen, E., Rotenberg, E., and Smith, J. E. Assigning Confidence
to Conditional Branch Prediction. In Proceedings of the 29th Inter-
national Symposium on Microarchitecture (MICRO-29), pages 142–152.
IEEE and ACM, December 1996.

[4] Lam, M. S. and Wilson, R. P. Limits of Control Flow on Parallelism. In
Proc. of the 19th Annual International Symposium on Computer Archi-
tecture, Gold Coast, Australia, pages 46–57. IEEE/ACM, May 1992.

[5] Uht, A. K., Sindagi, V., and Somanathan, S. Branch Effect Reduction
Techniques. IEEE COMPUTER, 30(5):71–81, May 1997.

[6] Valia, S. K., Koblenski, S. A., and Janes, D. R. Multipath Execution
Using Dynamic Relative Confidence. Technical report, Department of
Computer Sciences, University of Wisconsin, Madison, Madison, WI,
USA, Spring 2003. Instructor: Prof. David Wood.

[7] Knieser, M. J. and Papachristou, C. A. Y-Pipe: A Conditional Branch-
ing Scheme Without Pipeline Delays. In Proc. of the 25th International
Conference on Microarchitecture, page 125128. ACM/IEEE, 1992.

[8] Messaris, S. A. Combining Speculative with Eager Execution to Reduce
the Branch Penalty on Instruction-Level Parallel Architectures. Mas-
ter’s thesis, Department of Computer Science, Michigan Technological
University, Houghton, Michigan, USA, 1994.



24 Speculative Execution in High Performance Architectures

[9] Heil, T. H. and Smith, J. E. Selective Dual Path Execution. Technical
report, Department of Electrical and Computer Engineering, University
of Wisconsin-Madison, Madison, WI, USA, November 8, 1996.

[10] Tyson, G., Lick, K., and Farrens, M. Limited Dual Path Execution.
Technical Report CSE-TR-346-97, Dept. of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI, USA, 1997.

[11] Wallace, S., Calder, B., and Tullsen, D. M. Threaded Multiple Path
Execution. In 25th Annual International Symposium on Computer Ar-
chitecture, pages 238–249. ACM, June 1998.

[12] Klauser, A., Paithankar, A., and Grunwald, D. Selective Eager Execu-
tion on the PolyPath Architecture. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, Barcelona, Spain,
pages 250–259, June 27 - July 01, 1998.

[13] Ahuja, P. S., Skadron, K., Martonosi, M., and Clark, D. W. Multi-
path Execution: Opportunities and Limits. In Proceedings of the 12th
International Conference on Supercomputing. ACM, July 1998.

[14] Magid, N., Tjaden, G., and Messinger, H. Exploitation of Concurrency
by Virtual Elimination of Branch Instructions. In Proc. of the 1981 Intl.
Conference on Parallel Processing, pages 164–165, Aug. 1981.

[15] Uht, A. K. and Sindagi, V. Disjoint Eager Execution: An Optimal Form
of Speculative Execution. In Proc. of the 28th International Symposium
on Microarchitecture, Ann Arbor, MI, pages 313–325, Nov./Dec. 1995.

[16] Chen, T. F. Supporting Highly Speculative Execution via Adaptive
Branch Trees. In Proc. of the 4th International Symposium on High
Performance Computer Architecture, pages 185–194. IEEE, Jan. 1998.

[17] Uht, A. K., Morano, D., Khalafi, A., and Kaeli, D. R. Levo - A Scalable
Processor With High IPC. The Journal of Instruction-Level Parallelism,
5, August 2003.

[18] Kol, R. Self-Timed Asynchronous Architecture of an Advanced General
Purpose Microprocessor. PhD thesis, Dept. of Electrical Engineering,
The Technion - Israel Institute of Technology, Haifa, Israel, Nov. 1997.

[19] dos Santos, R., Navaux, P., and Nemirovsky, M. DCE: The Dynamic
Conditional Execution in a Multipath Contol Independent Architec-
ture. Technical Report UCSC-CRL-01-08, University of California,
Santa Cruz, Santa Cruz, CA, USA, June 2001.

[20] Acosta, C., Vajapeyam, S., Ramrez, A., and Valero, M. CDE: A
Compiler-driven, Dependence-centric, Eager-executing Architecture for
the Billion Transistor Era. In Proceedings of the Workshop on Com-
plexity Effective Design (WCED’03), at the International Symposium
on Computer Architecture (ISCA’03), July 2003.



Multipath Execution 25

[21] Gwennap, L. DanSoft Develops VLIW Design. Microprocessor Report,
11(2), February 17, 1997.

[22] Chidester, M. C., George, A. D., and Radlinski, M. A. Multiple-Path
Execution for Chip Multiprocessors. Elsevier Journal of Systems Archi-
tecture: the EUROMICRO Journal, 49(1-2):33–52, July 2003.

[23] Sundaramoorthy, K., Purser, Z., and Rotenberg, E. Multipath Execu-
tion on Chip Multiprocessors Enabled by Redundant Threads. Technical
Report CESR-TR-01-2, Center for Embedded System Research (CESR),
Department of Electrical and Computer Engineering, North Carolina
State University, Raleigh, NC, USA, October 23, 2001.

[24] Hordijk, J. and Corporaal, H. The Impact of Data Communication and
Control Synchronization on Coarse-Grain Task Parallelism. In Proceed-
ings of the 2nd Annual Conference of ASCI, Lommel, Advanced School
for Computing and Imaging, Delft, The Netherlands, January 1996.

[25] Tubella, J. and Gonzalez, A. Exploiting Path Parallelism in Logic Pro-
gramming. In Proceedings of the Euromicro Workshop on Parallel and
Distributed Processing, pages 164–173, January 25-27, 1995.

[26] Raghavan, P., Shachnai, H., and Yaniv, M. Dynamic Schemes for Specu-
lative Execution of Code. In Proc. of the Sixth International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), Montreal, Canada, July 1998.

[27] Gaysinsky, A., Itai, A., and Shachnai, H. Strongly Competitive Al-
gorithms for Caching with Pipelined Prefetching. In Proc. of the
9th Annual European Symposium on Algorithms, Aarhus, pages 49–61.
Springer-Verlag Lecture Notes In Computer Science, August 2001.

[28] Franklin, M. and Sohi, G. S. ARB: A Hardware Mechanism for Dynamic
Reordering of Memory References. IEEE Transactions on Computers,
45(5):552–571, May 1996.

[29] Fisher, J. A. Global Code Generation for Instruction-Level Parallelism:
Trace Scheduling-2. Technical Report HPL-93-43, Computer Research
Center, Hewlett-Packard Laboratories, Palo Alto, CA, USA, June 1993.

[30] Gonzalez, J. and Gonzalez, A. Limits on Instruction-Level Parallelism
with Data Speculation. Technical Report UPC-DAC-1997-34, Depart-
ment Architectura de Computadores, Universitat Polytechnica Catalan,
Barcelona, Spain, 1997.


